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Abstract

The detection of clouds within a satellite im-
age is essential for retrieving surface geophys-
ical parameters from optical and thermal im-
agery. Even a small percentage of cloud cover
within a radiometer pixel can adversely af-
fect the determination of surface variables
such as albedo and temperature. Thus, on-
board processing of satellite data requires re-
liable automated cloud detection algorithms
that are applicable to a wide range of surface
types. Unfortunately cloud-detection, partic-
ularly over snow- and ice-covered surfaces, is
a problem that plagues the field of remote
sensing because of the lack of spectral con-
trast. This paper discusses preliminary re-
sults based on kernel methods for unsuper-
vised discovery of snow, ice, clouds, and other
geophysical processes based on data from the
MODIS instrument and discusses implemen-
tation in computationally constrained envi-
ronments such as those found on satellites.

1. Motivation for Snow, Ice, and Cloud
Detection

Common approaches of detecting cloud cover are
based on spectral contrast, radiance spatial contrast,
radiance temporal contrast, or a combination of these
methods. These techniques work well over dark tar-
gets (e.g. vegetation), since clouds appear brighter
(higher albedo) in the visible range, and have lower
temperatures in the infrared compared to the cloud-
free background. Threshold values are then chosen to
represent the cloud-free background. Problems with
this method however, are that thresholds typically
need to be selected from scene to scene. Another

type of cloud detection that does not require abso-
lute thresholds evaluates the spatial coherence of the
observed scene. However, coherence tests suffer from
the fact that false detection is likely for clear pix-
els directly adjacent to cloud pixels. Recent work by
Stroeve (2002) shows that the current cloud masking
procedure used in the Advanced Very High Resolu-
tion Radiometer (AVHRR) Polar Pathfinder product
is not reliable over Greenland. Because of the limi-
tations of multispectral feature extraction from satel-
lite imagery to adequately discriminate clouds from
snow /ice-covered surfaces, artificial intelligence (AI)
techniques have seen increased use for the analysis of
remotely sensed data. Other techniques, such as using
a paired-histogram approach, have been attempted for
estimating clouds from snow- and ice-covered surfaces.
Results showed that in the polar regions, regional clas-
sifiers provide somewhat higher classification accuracy
but that the algorithm still had difficulty discrimi-
nating between snow/ice and cirrus clouds. Key et
al. (1999) used both a neural network approach and
a traditional maximum likelihood method for cloud
classification in the Arctic. They found that the neu-
ral network has greater flexibility to classify indistinct
classes. Maximum likelihood results could be made to
agree more closely with manual interpretation if the
training areas were significantly expanded. However,
at the time of the study, such a degree of training
was found to be impractical for remote sensing stud-
ies because of the volume of imagery that had to be
processed.

Onboard algorithms for discovery of geophysical pro-
cesses such as snow, ice, and clouds have the fur-
ther constraint that they need to be able to operate
with high computational efficiency. Thus, in design-
ing such discovery algorithms, one is faced with the
trade-off between computational complexity (as rep-
resented by peak CPU and RAM requirements) and



accuracy. Kernel methods with appropriate modifica-
tions, may offer a computationally viable means to ad-
dress this knowledge discovery problem. Preliminary
results discussed here and elsewhere (Lee et al., 2003)
in applying kernel methods to this problem domain
indicate promising results with respect to the ability
to discriminate between underlying features. Further
research needs to be done to make these algorithms
fully functional in an onboard setting.

Currently, most cloud detection algorithms operate
in ground-based data centers. Our motivation for
creating onboard discovery algorithms is to allow for
rapid capture of images that include interesting phe-
nomenon, and to reduce transmission of obscured im-
ages. Furthermore, discovery algorithms that assign
pixels to equivalence classes or cluster centers can sig-
nificantly increase the compressibility of the data set,
thus increasing the amount of information throughput.
Thieler and Gisler, (1997) showed that the number of
bits per pixel saved for a lossless compression scheme
is: v
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where d is the number of spectral channels, V{ is the
within cluster point scatter of the full data set (which
is independent of the clustering), V is the average
within cluster scatter, and S is the Shannon entropy
(in bits) of the clustering: S = — 3", prlogapi, where
Pk is the fraction of the number of points that falls in
cluster k. We estimate that using our kernel clustering
method described below, we will save approximately
7 bits per pixel. The kernel clustering described here
does not optimize the clustering for maximal compres-
sion. Theiler and Gisler, (1997) describe a method
based on contiguity enhanced k-means clustering that
can be adapted to optimize compression. If one al-
lows for lossy compression, the increase in throughput
is even more dramatic, since each multispectral vector
would be replaced by a single number.
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2. Kernel Methods

We begin by giving a brief introduction to kernel meth-
ods and our model of hyperspectral data. The kernel
methods discussed here have little relation to the es-
tablished notions of kernel density estimation (such
as mixtures of Gaussians, Parzen windows, etc). We
model the hyperspectral data as a spatiotemporal ran-
dom function Zi(a,3,\), which represents a series
of length T of three dimensional data cubes of size
(n x n x A), where n denotes the number of pixels in
one direction (assuming square images, without loss of
generality), A denotes the total number of measured
wavelengths, and T denotes the total number of time

samples.

Kernel functions can be interpreted as a similarity
measure that can be general or tailored to the specific
domain from which the data arises. A common mea-
sure of similarity between two spectral wavelengths A
and ) at a given time 7y is captured in the linear
covariance function. Linear covariance can be gen-
eralized by introducing a highly nonlinear function ®
that maps data from the A dimensional space to a high
(possibly infinite) dimensional Hilbert space (Cristian-
ini & Shawe-Taylor, 2000): ® : R* + H. The image
space of the mapping function is also known as the fea-
ture space. Thus, we can write the covariance matrix
in terms of the mapped data as follows:

Cov(®(Zx,(u, A)), ®(Zr, (u, X))
= Z )) = ma, (V)] %
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mr(A) is the mean spectral energy at wavelength
A at time 79 and u; is the ¢th spatial coordinate
vector, and N = n?. Once a mapping ® is pre-
scribed, one can perform linear operations in the fea-
ture space and map the results back to the origi-
nal A-dimensional space (Cristianini & Shawe-Taylor,

2000). Generic kernels include the Gaussian kernel,
K(Z;,Z;) = exp— l1Z:i=2;ll —Zi 12 and the polynomial ker-
nel, K(Z;,Z;) =< ZZ,Z >P. Note that we recover
the linear covariance measure if we take p = 1 in the
polynomial kernel.
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The MODIS data that we currently have is not la-
belled, so rather than casting this as a classification
problem, we formulate it as a kernel clustering problem
as shown in (Girolami, 2001). This raises the possibil-
ity that other geophysical processes in the data could
be discovered. An advantage of the kernel approach is
that once a suitable kernel is obtained, it can be ap-
plied to both clustering and classification problems. A
kernel function can be uploaded to a satellite for on-
board science in a clustering or classification setting,
depending on the nature of the mission. In a deep
space probe, for instance, it is likely that it would be
used for both clustering and classification: clustering
to generate features and then classification to predict
those features in new images.

3. Kernel Clustering in Feature Space

Girolami, (2001) has given an algorithm to perform
clustering in the feature space using an approach simi-
lar to k-means clustering. A brief review of the method
follows. The cost equation for k-means clustering in



the feature space at a given instant in time is:
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where gg; is the cluster membership indicator function
(qxi = 1 if vector Z; is a member of cluster k, and zero
otherwise), and m{ is the cluster center in the fea-
ture space. Thus, if we expand the right-hand side of
the above equation, and take mj = + va:l i ®(Z;),
which represents the centroid of the cluster in feature
space, we obtain an equation in which only inner prod-
ucts appear. The nonlinear mapping ¢ does not need
to be determined explicitly because the kernel func-
tion is taken as the inner product in the feature space:
K;; = ®7(Z;)®(Z;). The objective of kernel clus-
tering is to find a membership function ¢ and clus-
ter centers m® that minimize the cost G®. Various
methods can be used to minimize G®, including an-
nealing methods (as described in Girolami, 2001) or
direct search.

4. Designing Probabilistic Kernels

Although there are many generic positive definite ker-
nel functions such as the Gaussian kernel, the poly-
nomial kernel, and the Fourier kernel, our goal is to
create kernels that have superior performance with re-
spect to the discovery process compared to a generic
kernel and are robust to errors made in the underly-
ing assumptions about the distribution of the data.
In order to accomplish this, we build a variant of
Probabilistic Kernels (P-Kernels) based on the data,
which is an idea that is discussed in (Haussler, 1999).
The underpinnings of the P-Kernel is a probabilistic
model of the data. In our case, we build a Gaussian
mixture model with spherical covariance structure:
P(Z]0) = 7, 8G(2Z]6y,), where 6y = (ux, Z), and
G is the multivariate normal distribution.

Haussler’'s P-Kernel takes the kernel function to be
K(Z;,Z;) = P(Z;|M)P(Z;|M), where M is a prob-
abilistic model. This kernel assumes that the obser-
vations are independent and is very sensitive to small
changes in the uncertainty of the probabilities. Our
goal is to build a kernel that is insensitive to varia-
tions in the estimated probability distribution. We
thus design the following new Probabilistic Kernel:
2

P(k|Z:)P(k| Z;)
P55
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where K denotes the Probabilistic Kernel, K is the
number of modes in the mixture model, P(k|Z;) is the
posterior probability of spectrum Z; being allocated

to class k, and ||P;|| is the norm of the vector of class
distributions for spectrum 4. This kernel treats un-
certainty in a very different way than the standard
P-kernel. If there is no uncertainty in the class dis-
tribution, the distribution will have a delta function
at a single value of k, thus the kernel function will ei-
ther be zero if Z; and Z; belong to different classes,
or one if they belong to the same class. In this model,
if there is uncertainty in the class distribution, the
entropy of the class distribution will be closer to a
maximum (i.e., the distribution will be less peaked),
thus affecting the inner product in equation 3 and giv-
ing intermediate values between zero and one for the
kernel function. This feature becomes apparent when
looking at experimental results of multispectral data
taken over Greenland. In our experiments, we used
this new Probabilistic Kernel in the kernel clustering
algorithm.

5. Data and Experimental Results

We obtained MODIS level 1B data for the Greenland
ice sheet from the NASA Langley DAAC and mapped
the data to a 1.25 km equal-area scalable Earth-grid
(EASE-grid) using software developed by NSIDC to
process MODIS level 1B data and convert the visi-
ble channel data to top-of-the-atmosphere (TOA) re-
flectances. We chose to work with Greenland images
because the second author has performed extensive
fieldwork in the area. Next the TOA reflectances were
normalized by the cosine of the solar zenith angle.
Only the first 7 MODIS channels were used for this
study '. The image shown in Figure 1 was taken on
June 1, 2000 at 1445 GMT. As expected, the spec-
tral signals for the 7 different MODIS channels are
highly correlated, with linear correlation coefficients
over 98%.

Figure la shows the TOA reflectance corresponding
to MODIS channel 5. The darker areas correspond
to regions of lower reflectance than the brighter areas,
indicating regions of larger snow grain size. Analysis
of MODIS Channel 1 data from June 1, 2000 indicate
that most of the ice sheet is snow covered. Exceptions
occur along the margins of the ice sheet in the south
where there is either bare ice or bare ground exposed.
These areas are evident by the even darker (lower re-
flectance) regions shown in Figure la. Some of the
dark areas in the south west correspond to larger snow

!The bandwidths of the first seven MODIS channels are
as follows (in nm): Channel 1: 620-670, Channel 2: 841-
876, Channel 3: 459-479, Channel 4: 545-565, Channel 5:
1230-1250, Channel 6: 1628-1652, Channel 7: 2105-2155.
Resolutions for Channels 1-2: 250 m, 3-7: 500 m



grain sizes associated with melt processes. Analysis of
passive microwave melt data show that some melt is
occurring in this region on June 1, 2000.

To establish a baseline of performance, we performed
clustering on the data using the k-means clustering al-
gorithm with 10 centers specified. The algorithm was
seeded with random initial cluster centers. In order to
encode some notion of spatial coherence, we vectorized
5x5 blocks of the data and performed k-means on the
resulting 5 x 5 x 7 = 175 dimensional vectors. There
are other methods to encode spatial coherence based
on variants of the EM algorithm (Masson & Pieczyn-
ski, 1993) that bias the model towards a smoother spa-
tial representation. Results for a typical run are shown
in Figure 1b, where each distinct level of gray corre-
sponds to a different cluster center. The algorithm
captures some of the clouds over water regions and
classifies Greenland as a single, monolithic entity.

We ran the kernel clustering algorithm using the Gaus-
sian kernel function with 10 centers using the vec-
torized data in the full 175 dimensional space. The
Gaussian kernel has an isotropic scale parameter which
requires tuning. We chose to set the scale parame-
ter as the average minimum Euclidean distance be-
tween the centroids discovered in the k-means algo-
rithm (Cristianini & Shawe-Taylor, 2000). These re-
sults are shown in Figure 2a. The results have approx-
imately a 50% overlap with the k-means results. There
is a marked difference in the algorithm’s performance
over the Greenland ice sheet. Rather than attributing
a single cluster to the entire region, the kernel method
breaks the region into two areas. Upon further inves-
tigation, we determined that the algorithm revealed
regions of different snow types (e.g. different grain
sizes). This is of physical relevance since grain size
directly affects the calculation of albedo.

To determine whether the results of the k-means
clustering were statistically different than the kernel
method, we ran ten models of kernel clustering and
k-means clustering with random initial conditions and
recorded the number of cluster centers that were used
to describe the Greenland ice sheet using each algo-
rithm. A one-way analysis of variance indicated that
we must reject the null hypothesis that the means
of the number of cluster centers used to describe the
ice sheet are equal at the 0.1% significance level with
F = 15.78 and p = 0.0009. The average number of
cluster centers used to describe the ice sheet is 1.5
for k-means clustering and 2.6 for kernel clustering.
Figure 2b shows the results of the application of the
Gaussian Mixture Model (GMM) to the same data set.
Unlike the k-means segmentation, the GMM discovers

Figure 1a: MODIS Channel 5

Figure 1b: K-means segmentat

Figure 1. (a) This figure shows the TOA reflectance of
MODIS channel 5 (1230-1250 nm). The darker areas over
Greenland are lower reflectance than lighter regions, and
correspond to larger snow grain sizes, which according to
passive microwave melt estimates on that day could indi-
cate some melting in the south western margin of the ice
sheet. (b) Shows the k-means clustering results. Notice
that the entire ice sheet is characterized as a single entity.

different snow types (due to the difference in grain
size) on the ice sheet and also discovers water regions
(lighter color in lower left of Figure 2b). As in the case
of the Gaussian Kernel and the k-means algorithm, the
GMM isolates clouds over the ice sheet (NE and SW
regions). Notice that the gradient in grain size, which
indicates a region in flux, is not detected.

Figure 2c¢ shows the output of the Probabilistic Ker-
nel model described above. As expected, the output is
similar to the GMM, with the exception of the iden-
tification of the gradient in grain size around the ice
sheet, particularly in the SE region. Figure 2d shows
the difference between the Probabilistic Kernel and the
GMM. Another area that the two models differ is in
the identification of water regions. The GMM isolates
water regions whereas the Probabilistic Kernel model
is combining those regions with other regions of low
reflectance. Overall the models differ in about 4.4%
of the predictions. The Probabilistic Kernel method
isolates regions of uncertainty and attributes them to
a given class, sometimes distinct from the underlying
estimated probability distribution, in an attempt to
enhance the signal to noise ratio. We are actively pur-
suing enhancing the kernel model with domain knowl-
edge to further increase its value.

6. Challenges of Applying Kernel
Methods in Onboard Processing

While kernel methods offer the promise to improve
clustering results, they suffer from some drawbacks
that make their use in onboard applications challeng-
ing. Kernel methods can be computationally and
memory intensive because they require computing and
storing an (N x N) kernel matrix, where N is the num-
ber of independent data points. An important area of



Figure 2a: Gaussian Kernel

Figure 2b: Gaussian Mixture

Figure 2. (a) The results of applying kernel clustering to
MODIS data from June 2000 using the Gaussian kernel.
The kernel method discovers the clouds over snow (NE
region), plain snow (S part of ice sheet), clouds over wa-
ter (SE region), and also divides Greenland into two areas
which have different grain sizes. Since ground-truth data
is not available, we provide an image from Channel 5 in
Figure la which is used to detect grain size to corroborate
our results. This result motivates our attempt to design
kernels to discover geophysical processes. (b) The results
of application of a Gaussian Mixture Model. This isolates
the two regions with different grain size (with a different
and more accurate boundary) compared with the Gaussian
kernel. (c) Application of the probabilistic kernel reveals
the same area with different grain size but also indicates
the gradient in grain size. (d) The difference between the
GMM and the Probabilistic Kernel clustering output.

research is in regards to reducing the memory require-
ments of kernel methods.

Other issues that arise in designed kernels is that they
may not appropriately express the inherent similarity
in the data. For example, it may be that a designed
similarity metric is not as robust as a Euclidean metric,
even though it encodes other domain knowledge. The
Euclidean metric for hyperspectral data has well un-
derstood behavior if one controls for outliers. Other
metrics, such as linear correlation and Mahalanobis
distance have similar properties.

The preliminary results presented here lend credibility
to the idea that a kernel-based method could reveal
geophysical processes and discriminate between such
processes. The Probabilistic Kernel may be indicative
of a new method to generate kernels directly from data
which appropriately deal with uncertainty in the un-
derlying probability distribution. Onboard algorithms
based on such a kernel could dramatically increase the

transmission of useful data while reducing the trans-
mission of obscured images.
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